-	Algel	oraic	Expressions – Test A (14 r	nins)	✓ Fundamentals Challenge	Expert		
	Subtopics: Index laws, expanding brack	cets, fa	ctorising, negative and fractional	l indic	es, surds, rationalising denomir	ators		
1.	Expand the brackets and simplify where necessary:							
1	a) $2(x+3)$		2x(5-9x)	c)	(x+1)(x+2)			
Ì	d) $(3+y)(4-y)$	e)	$(x+3)(x^2+5x-2)$	f)	(x+1)(x+2)(x+3)	[11]		
2.	Factorise fully:							
	a) $3x + 6$		$12x - x^2$		$x^{2} + 7x + 10$			
	d) $x^2 - 4$	e)	$2x^2 - x - 1$	f)	$x^3 + 4x^2 + 3x$	[9]		
3.	Simplify the following express	ions:						
	a) $x^2 \times x^3$	b)	x^{0}	c)	$(x^2)^{\frac{5}{2}}$			
	d) $3x^7 \div x^3$	e)	x^0 $y^5 \times y^{-3}$	f)	$\frac{15y^6}{5y^3}$	[6]		
4.	Simplify as fully as possible:							
	a) $\sqrt{16}$		$\sqrt{75}$	c)	3√24			
	d) $\sqrt{12} + \sqrt{27}$	e)	$\frac{\sqrt{32}}{\sqrt{2}}$	f)	$\sqrt{2} \times \sqrt{32}$	[10]		
5.	Simplify:							
I	a) $\left(\sqrt{x}\right)^2$	b)	$\sqrt{y^2} \times \sqrt{y^3}$	c)	$\left(3\sqrt{y}\right)^2$	[5]		
6.	Write the following as fractions or integers :							
	a) 22^{-1}	b)	$27^{\frac{1}{3}}$	c)	$9^{\frac{3}{2}}$	[4]		
7.	7. Rationalise the denominator of the following fractions:							

a) $\frac{1}{\sqrt{5}}$ b) $\frac{3}{\sqrt{2}}$ c) $\frac{1}{2+\sqrt{3}}$ [5]

TOTAL 50 MARKS

Quadratics – Test A (19 mins)

✓ Fundamentals Challenge Expert

[2]

[2]

[2]

[1]

Subtopics: Solving quadratic equations, completing the square, functions, quadratic graphs, discriminants, modelling

1. a) Solve the following equations by factorisation:

1 1

- i) $x^2 2x = 0$ [2]
- ii) $x^2 + 3x + 2 = 0$ [2]

b) Rearrange the equation $x + \frac{8}{x} = 6$, $x \neq 0$ into the form $x^2 + bx + c = 0$, then factorise the quadratic expression and solve. [3]

- 2. Solve $(x-4)^2 = 4$. Start by taking the square root of both sides.
- 3. Solve the following equations of the form $ax^2 + bx + c = 0$ using the **quadratic formula**, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, leaving your answers in simplified surd form when necessary: a) $x^2 - x - 2 = 0$ b) $2x^2 + 4x - 7 = 0$ c) $3x^2 - 5x - 2 = 0$ [6]

4. Complete the square for the following expressions by writing them in the form $(x + a)^2 + b$: a) $x^2 + 6x$ b) $x^2 - 8x$ c) $x^2 + 14x + 2$ [6]

- 5. Solve the following equations by completing the square: a) $x^2 + 16x = 0$ b) $x^2 + 6x + 9 = 0$ c) $x^2 + 4x + 3 = 0$ [8]
- 6. The functions f and g are given by f(x) = 6x 4 and $g(x) = x^2 + 12x + 36$.
 - a) Find the values of f(3) and g(2)
 - b) Find the value of x where f(x) = 14 [2]
 - c) Find the root(s) of the function g(x)

7. Sketch the following on separate diagrams, labelling all points where the curves cross the axes: a) y = (x+3)(x-4) b) $y = x^2 + 3x - 54$

- c) $y = 2 x^2$ d) y = (2 x)(x 8) [9]
- 8. Calculate the value of the **discriminant** for the following, stating whether the function has two real roots, no real roots or one repeated root:

a)
$$f(x) = x^2 + 6x - 2$$

b) $g(x) = x^2 - 8x + 3$
c) $h(x) = 2x^2 - 5x + 7$
d) $j(x) = x^2 + 4x + 4$
[8]

- 9. Fill in the gaps:
 - a) The set of all possible **inputs** for a function is called the _____. [1]
 - b) The set of all possible **outputs** of a function is called the _____.

TOTAL 54 MARKS

Simultaneous Equations and Inequalities - Test A (10 mins) V Fundamentals Challenge Expert

Subtopics: Linear simultaneous equations, quadratic simultaneous equations, simultaneous equations on graphs, linear inequalities, quadratic inequalities, inequalities on graphs, regions

1. Solve the following simultaneous equations by elimination:

$$3x + y = 5$$

$$2x + y = 4$$
 [3]

2. Solve the following simultaneous equations by substitution:

$$x - y = 4$$
[3]

$$3x + y = 16$$

3. Solve the simultaneous equations:

$$2x + 3y = 7$$

$$3x + y = 7$$
[4]

4. Solve the simultaneous equations:

$$x - y = 5
 x2 + x + y = -2
 [5]$$

5. Solve the following inequalities:

1 1 1

a)	2x - 3 > 0	[1]
b)	$(x-2)(x+3) \ge 0$	[3]
c)	$x^2 - 4x - 5 \le 0$	[4]
d)	$x^2 + 5x - 1 < 2x - 3$	[4]

6. a) On three separate diagrams, sketch the graphs that represent the boundaries of the following inequalities, labelling all points where each graph crosses the axes:

	1) $y \ge x$	[3]
	ii) $y > (x-2)(x+2)$	[3]
	$iii) y \le x^2 - 5x + 6$	[4]
b)	For each graph, shade the region that satisfies the inequality and label it \mathbf{R} .	[3]

TOTAL 40 MARKS

Graphs and Transformations - Test A (17 mins) & Fundamentals Challenge Expert

Subtopics: Cubic graphs, quartic graphs, reciprocal graphs, points of intersection, translations, stretching, transformations

- 1. Sketch the following cubics, indicating all points where the curves cross or touch the axes:
 - a) $y = x^3$ b) $y = -x^3$ c) y = (x+2)(x+1)(x-1)d) $y = (x-1)^2(x+3)$ e) $y = (x+4)^3$ f) y = x(x-1)(x-3) [12]
- 2. Sketch the following quartics, indicating all points where the curves cross or touch the axes:
 - a) $y = x^4$ b) y = (x-1)(x-2)(x+2)(x+3)c) $y = -x^4$ d) $y = (x-1)^2(x+3)(x+5)$ e) $y = (x-2)^2(x+2)^2$ f) $y = -(x-3)(x+1)(x+2)^2$ [16]
- 3. Sketch each of the following pairs of curves on the same diagram:
 - a) $y = \frac{1}{x}$ and $y = \frac{4}{x}$ b) $y = -\frac{1}{x}$ and $y = -\frac{3}{x}$ c) $y = \frac{2}{x^2}$ and $y = \frac{5}{x^2}$ d) $y = -\frac{8}{x^2}$ and $y = -\frac{1}{x^2}$ [8]
- 4. a) On the same diagram, sketch the curves $y = \frac{2}{x^2}$ and $y = x^2(x-5)$, labelling any points where the curves cross the axes. [3]
 - b) Using your sketch, state the number of real solutions to the equation $x^4(x-5)-2=0$. Give a reason for your answer. [2]
- 5. a) Give the vector that corresponds to the translation that takes y = f(x) to y = f(x) + 5 [2]
 - b) Give the vector that corresponds to the translation that takes y = f(x) to y = f(x+2) [2]

Sketch the following graphs, indicating any points where the curves cross or touch the axes:

a) y = f(x+2)b) y = g(x)-2c) $y = \frac{1}{3}f(x+2)$ d) y = f(2x)e) y = -h(x)f) y = h(-x)[12]

TOTAL 57 MARKS

į	C.	· · · ·					
+			t Line Graphs – Test A (9 1			Expert	
	Subtopics: Equations of straight lines, parallel and perpendicular lines, length and area, modelling						
1.	Write down the gradient and y a) $y = -4x + 11$		-	`	6 9 4 9	10	
	a) $y = -4x + 11$	0)	y + 2x + 3 = 0	C)	6x - 2y + 4 = 0	[6]	
2.	Work out the gradient of the lines joining these pairs of points:						
	a) $(-1, -1), (1, 1)$	b)	(-1,2), (5,4)	c)	(-1, -1), (3, 1)		
	d) $(8, 4), (6, 3)$	e)	$(0, 3c), (6c, 0), c \neq 0$	Ð	$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix}$	[12]	
	(0, 1), (0, 2)	0)	(0,50), (00,0), 0 ≠ 0	1)	$\left(\overline{3},\overline{2}\right),\left(\overline{4},1\right)$	[12]	
3.	Write these lines in the form $ax + by + c = 0$, where <i>a</i> , <i>b</i> , and <i>c</i> are integers and $a \ge 0$:						
5.							
	a) $y = 2x + 1$	b)	$y = \frac{4}{5}x$	c)	$y = -3x + \frac{5}{8}$	[3]	
4	Find the equation of the line and	41.		a1 -			
4.	Find the equation of the line wi Give your answer in the form y			the p	point(2, 1).	[2]	
						[~]	
5.	Find the equation of the line that passes through the points $(3, 2)$ and $(5, 6)$.						
	Give your answer in the form a	x + by	v + c = 0, where a, b , and c a	re in	tegers and $a \ge 0$.	[4]	
6.	Work out whether the following	nair	of lines are narallal.				
0.	a) $y = 2x - 1$	b)	y = 4x + 2	c)	2x - 3y + 8 = 0		
	y + 2x + 4 = 0		8x - 2y + 5 = 0		3x - 2y + 8 = 0	[9]	
7		•	C1'				
7.	Work out whether the following a) $y = 3x + 2$		y = 2x + 4		4x - 2y - 2 = 0		
		0)	~	0)	2		
	$y = -\frac{1}{3}x + 2$		y + 2x = 4		2x + 4y - 6 = 0	[9]	
0	. Find the distance between the following pairs of points. <i>Leave your answer in simplified surd form</i> .						
8.	Find the distance between the form a) $(0,4), (2,6)$		(-1,3), (2,9)		nswer in simplified surd for $(-2, -5), (4, 1)$	rm. [6]	
	u) (0, 7), (2, 0)	Uj	(-1, 5), (2, 5)	0)	(-2, -3), (-7, 1)	լօյ	

H 1 1

TOTAL 51 MARKS